Home » News » Auto » Continental Launches Series Production of Technologies for Robo-Taxi

Continental Launches Series Production of Technologies for Robo-Taxi

Edited By: Anirudh SK


Last Updated: July 11, 2019, 15:32 IST

Continental Launches Series Production of Technologies for Robo-Taxi

This year, Continental’s technology for driverless vehicles will be in production for the first time in French company EasyMile’s EZ10 autonomous shuttle.

Researchers at tech-giant Continental in Europe, North America and Asia are working to make proven series production technologies suitable for use in robo-taxis. Already this year, Continental’s technology for driverless vehicles will be in production for the first time in French company EasyMile’s EZ10 autonomous shuttle.

Tailor-made technologies for customers developing driverless mobility systems

With the aid of the CUbE, Continental has developed a production-ready radar system especially for driverless vehicles. The vehicle can generate a 360-degree image of its environment by combining the data from different sensor technologies. This, in turn, ensures redundancy and a higher level of accuracy not previously achieved, because radar systems function independent of visibility conditions and can even see through objects such as parked cars and detect the street corner behind them.

Continental’s radar sensor, which will be used in the EZ10 autonomous shuttle from EasyMile later this year, detects the vehicle’s environment within a radius of up to 200 meters. The vehicle is equipped with a total of seven radar sensors, as well as laser sensors and cameras. This allows the location to be precisely determined and, at the same time, early detection of obstacles and potentially critical situations. Tried-and-tested products from high-volume car production are intelligently networked and adapted to one another to make them suitable for a completely new type of mobility.

Redundant brake systems and ABS functions for robo-taxis

Continental’s portfolio includes suitable technologies, such as the MK C1 one-box brake system, which has been in series production since 2016 and combines ABS, ESC, and a brake booster. For use in autonomous vehicles, the one-box brake system is combined with a Hydraulic Brake Extension that can, in conjunction with ABS, safely brake the vehicle in the highly unlikely event of primary brake failure. Full braking functionality is therefore guaranteed. In the new combination, they form the redundant and production-ready MK C1 HAD brake system for highly automated driving and for driverless mobility applications. The MK C1 HAD offers an additional safety benefit in that the electromechanically generated maximum brake pressure is achieved after only 150 milliseconds. This means that automated vehicles without driver intervention can be brought to a standstill more rapidly than would be possible with conventional brake systems. The ABS function represents an additional feature, because robo-taxis have not been equipped with a system of this type until now. The technology will become especially important when driverless vehicles are on the road in wintry road conditions. Vehicle dynamics systems such as ABS, ESC, and traction control will enable vehicles to pull away safely on icy roads and provide maximum traction on slippery slopes or during braking.

The development of these and other technologies for driverless vehicles is being advanced by a global network comprising a total of five Continental centers of excellence in Germany, China,

Japan, Singapore, and the U.S. In closed-off areas, such as on a company premises or on special routes in clearly defined urban areas, driverless mobility services are already in operation today. However, it is likely to take another decade or so before robo-taxis become a common sight in normal traffic. One of these development steps is real-life pilot operations where development opportunities for fully autonomous driving in urban areas are investigated.

Continental PP CUbE. (Image source: Continental)

For this purpose, Continental, EasyMile, Oakland University, and the City of Auburn Hills in Michigan are set to implement the pilot deployment of an autonomous shuttle thanks to a grant from Michigan’s PlanetM mobility initiative, which supports companies in testing their technologies for future mobility. The pilot will begin in late August and last up to six months. The driverless shuttle will be deployed on the grounds of Oakland University, which is a sprawling and hilly college campus where navigation between buildings can be a challenge for students and faculty. The autonomous shuttle pilot service is a perfect solution for everyone who uses the campus.

During the pilot, Continental will integrate its Zonar technology, which enables vehicle inspections via the RFID technology EVIR. The EVIR system captures, transmits, and records inspection, compliance, and maintenance data to the operator. Moreover, the Zonar Z Pass technology detects where and when the passengers enter and exit the vehicle. The aim of this pilot project is to gather experience in the operation of driverless vehicles and to collect valuable, empirical data that will be integrated in the technological development of these vehicles.

Furthermore, the technologies necessary for this purpose must be designed in a manner suitable for production on an industrial scale. From a regulatory and social viewpoint there are still several questions that need to be clarified and solutions developed before robo-taxis become widely established in the streetscape. Andree Hohm said, “Driverless vehicles are a revolution, and this revolution will and must take place in evolutionary steps.”

Continental develops pioneering technologies and services for sustainable and connected mobility of people and their goods. Founded in 1871, the technology company offers safe, efficient, intelligent, and affordable solutions for vehicles, machines, traffic and transportation. In 2018, Continental generated sales of €44.4 billion and currently employs around 245,000 people in 60 countries and markets.

For Continental, automated driving is an essential building block of future mobility. It will significantly change people’s journeys, for example, on the highway, in the city, and when parking. In 2012, Continental became the first automotive supplier worldwide to receive a license for highly automated test drives on public roads in the US state of Nevada. Sensors, control units, brake systems, software, connectivity solutions, driving functions as well as information and control systems for automated driving are developed in a global network focusing on Japan, China, the USA, India, and Europe. In the future, this will enable a wide range of solutions between partially automated and driverless vehicles. The aim is a seamless, efficient, sustainable, and comfortable mobility without crashes.

Read More