Take the pledge to vote

For a better tommorow#AajSawaroApnaKal
  • I agree to receive emails from News18

  • I promise to vote in this year's elections no matter what the odds are.
  • Please check above checkbox.

    SUBMIT

Thank you for
taking the pledge

Vote responsibly as each vote counts
and makes a diffrence

Disclaimer:

Issued in public interest by HDFC Life. HDFC Life Insurance Company Limited (Formerly HDFC Standard Life Insurance Company Limited) (“HDFC Life”). CIN: L65110MH2000PLC128245, IRDAI Reg. No. 101 . The name/letters "HDFC" in the name/logo of the company belongs to Housing Development Finance Corporation Limited ("HDFC Limited") and is used by HDFC Life under an agreement entered into with HDFC Limited. ARN EU/04/19/13618
LIVE TV DownloadNews18 App
News18 English
News18 » Buzz
1-min read

Solution to Delhi's Air Problem? New Material Converts Toxic Pollutant to Useful Industry Chemical

The technology could lead to air pollution control and help remedy the negative impact nitrogen dioxide has on the environment.

IANS

Updated:November 26, 2019, 12:21 PM IST
facebookTwitter Pocket whatsapp
Solution to Delhi's Air Problem? New Material Converts Toxic Pollutant to Useful Industry Chemical
An auto-rickshaw moves past the India Gate on a smoggy morning in New Delhi on November 11, 2019. (Image: Reuters)

An international team of scientists have developed a new material that can capture a toxic pollutant produced by burning fossil fuels and convert it into useful industrial chemicals using only water and air.

The technology could lead to air pollution control and help remedy the negative impact nitrogen dioxide has on the environment.

The metal-organic framework (MOF) material provides a selective, fully reversible and repeatable capability to capture nitrogen dioxide (NO2), a toxic air pollutant produced particularly by diesel and bio-fuel use, said the study published in the journal Nature Chemistry.

The NO2 can then be easily converted into nitric acid, a multi-billion dollar industry with uses including, agricultural fertiliser for crops; rocket propellant and nylon.

MOFs are tiny three-dimensional structures which are porous and can trap gasses inside, acting like cages.

"This is the first MOF to both capture and convert a toxic, gaseous air pollutant into a useful industrial commodity," said Sihai Yang, a lead author and a senior lecturer at University of Manchester in Britain.

"It is also interesting that the highest rate of nitrogen dioxide uptake by this MOF occurs at around 45 degrees Centigrade, which is about the temperature of automobile exhausts."

The material, named MFM-520, can capture nitrogen dioxide at ambient pressures and temperatures -- even at low concentrations and during flow -- in the presence of moisture, sulfur dioxide and carbon dioxide, said the study.

The highly efficient mechanism in this new MOF was characterised by researchers using neutron scattering and synchrotron X-ray diffraction at the US Department of Energy's Oak Ridge National Laboratory and Berkeley National Laboratory, respectively.

The team also used the National Service for Electron Paramagnetic Resonance Spectroscopy at Manchester to study the mechanism of adsorption of nitrogen dioxide in MFM-520.

"The global market for nitric acid in 2016 was $2.5 billion, so there is a lot of potential for manufacturers of this MOF technology to recoup their costs and profit from the resulting nitric acid production. Especially since the only additives required are water and air," Martin Schroder, Professor at University of Manchester.

Get the best of News18 delivered to your inbox - subscribe to News18 Daybreak. Follow News18.com on Twitter, Instagram, Facebook, Telegram, TikTok and on YouTube, and stay in the know with what's happening in the world around you – in real time.

Read full article
Next Story
Next Story

facebookTwitter Pocket whatsapp

Live TV

Countdown To Elections Results
To Assembly Elections 2018 Results